Budding and vesiculation induced by conical membrane inclusions.

نویسندگان

  • Thorsten Auth
  • Gerhard Gompper
چکیده

Conical inclusions in a lipid bilayer generate an overall spontaneous curvature of the membrane that depends on concentration and geometry of the inclusions. Examples are integral and attached membrane proteins, viruses, and lipid domains. We propose an analytical model to study budding and vesiculation of the lipid bilayer membrane, which is based on the membrane bending energy and the translational entropy of the inclusions. If the inclusions are placed on a membrane with similar curvature radius, their repulsive membrane-mediated interaction is screened. Therefore, for high inclusion density the inclusions aggregate, induce bud formation, and finally vesiculation. Already with the bending energy alone our model allows the prediction of bud radii. However, in case the inclusions induce a single large vesicle to split into two smaller vesicles, bending energy alone predicts that the smaller vesicles have different sizes whereas the translational entropy favors the formation of equal-sized vesicles. Our results agree well with those of recent computer simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erythrocyte membrane vesiculation: model for the molecular mechanism of protein sorting.

Budding and vesiculation of erythrocyte membranes occurs by a process involving an uncoupling of the membrane skeleton from the lipid bilayer. Vesicle formation provides an important means whereby protein sorting and trafficking can occur. To understand the mechanism of sorting at the molecular level, we have developed a micropipette technique to quantify the redistribution of fluorescently lab...

متن کامل

Design principles for robust vesiculation in clathrin-mediated endocytosis.

A critical step in cellular-trafficking pathways is the budding of membranes by protein coats, which recent experiments have demonstrated can be inhibited by elevated membrane tension. The robustness of processes like clathrin-mediated endocytosis (CME) across a diverse range of organisms and mechanical environments suggests that the protein machinery in this process has evolved to take advanta...

متن کامل

Membrane deformation and scission by the HSV-1 nuclear egress complex

The nuclear egress complex (NEC) of herpesviruses such as HSV-1 is essential for the exit of nascent capsids from the cell nucleus. The NEC drives nuclear envelope vesiculation in cells, but the precise budding mechanism and the potential involvement of cellular proteins are unclear. Here we report that HSV-1 NEC alone is sufficient for membrane budding in vitro and thus represents a complete m...

متن کامل

Endovesicle formation and membrane perturbation induced by polyoxyethyleneglycolalkylethers in human erythrocytes.

Polyoxyethyleneglycolalkylether (CmEn, m=12, n=8) can induce a large torocyte-like endovesicle in human erythrocytes. The present study aimed to examine how variations in the molecular structure of CmEn (m=10,12,14,16,18; n=1-10,23) affect the occurrence of torocyte endovesicles. Our results show that torocytes occur most frequently when m=12,14 and n=8,9. At this molecular configuration the de...

متن کامل

Phospholipase A2 promotes raft budding and fission from giant liposomes.

Cellular processes involving membrane vesiculation are related to cellular transport and membrane components trafficking. Endocytosis, formation of caveolae and caveosomes, as well as Golgi membranes traffic have been linked to the existence and dynamics of particular types of lipid/protein membrane domains, enriched in sphingolipids and cholesterol, called rafts [Nature 387 (1997) 569; Trends ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 80 3 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2009